Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the past few decades, numerous experiments have shown that humans do not always behave so as to maximize their material payoff. Cooperative behavior when noncooperation is a dominant strategy (with respect to the material payoffs) is particularly puzzling. Here we propose a novel approach to explain cooperation, assuming what Halpern and Pass call translucent players. Typically, players are assumed to be opaque, in the sense that a deviation by one player in a normal-form game does not affect the strategies used by other players. However, a player may believe that if he switches from one strategy to another, the fact that he chooses to switch may be visible to the other players. For example, if he chooses to defect in Prisoner’s Dilemma, the other player may sense his guilt. We show that by assuming translucent players, we can recover many of the regularities observed in human behavior in well-studied games such as Prisoner’s Dilemma, Traveler’s Dilemma, Bertrand Competition, and the Public Goods game. The approach can also be extended to take into account a player’s concerns that his social group (or God) may observe his actions. This extension helps explain prosocial behavior in situations in which previous models of social behavior fail to make correct predictions (e.g. conflict situations and situations where there is a trade-off between equity and efficiency).more » « less
-
Abstract Scientific evidence regularly guides policy decisions1, with behavioural science increasingly part of this process2. In April 2020, an influential paper3proposed 19 policy recommendations (‘claims’) detailing how evidence from behavioural science could contribute to efforts to reduce impacts and end the COVID-19 pandemic. Here we assess 747 pandemic-related research articles that empirically investigated those claims. We report the scale of evidence and whether evidence supports them to indicate applicability for policymaking. Two independent teams, involving 72 reviewers, found evidence for 18 of 19 claims, with both teams finding evidence supporting 16 (89%) of those 18 claims. The strongest evidence supported claims that anticipated culture, polarization and misinformation would be associated with policy effectiveness. Claims suggesting trusted leaders and positive social norms increased adherence to behavioural interventions also had strong empirical support, as did appealing to social consensus or bipartisan agreement. Targeted language in messaging yielded mixed effects and there were no effects for highlighting individual benefits or protecting others. No available evidence existed to assess any distinct differences in effects between using the terms ‘physical distancing’ and ‘social distancing’. Analysis of 463 papers containing data showed generally large samples; 418 involved human participants with a mean of 16,848 (median of 1,699). That statistical power underscored improved suitability of behavioural science research for informing policy decisions. Furthermore, by implementing a standardized approach to evidence selection and synthesis, we amplify broader implications for advancing scientific evidence in policy formulation and prioritization.more » « less
An official website of the United States government
